Nonlinear stability and ergodicity of ensemble based Kalman filters
نویسندگان
چکیده
The ensemble Kalman filter (EnKF) and ensemble square root filter (ESRF) are data assimilation methods used to combine high dimensional, nonlinear dynamical models with observed data. Despite their widespread usage in climate science and oil reservoir simulation, very little is known about the long-time behavior of these methods and why they are effective when applied with modest ensemble sizes in large dimensional turbulent dynamical systems. By following the basic principles of energy dissipation and controllability of filters, this paper establishes a simple, systematic and rigorous framework for the nonlinear analysis of EnKF and ESRF with arbitrary ensemble size, focusing on the dynamical properties of boundedness and geometric ergodicity. The time uniform boundedness guarantees that the filter estimate will not diverge to machine infinity in finite time, which is a potential threat for EnKF and ESQF known as the catastrophic filter divergence. Geometric ergodicity ensures in addition that the filter has a unique invariant measure and that initialization errors will dissipate exponentially in time. We establish these results by introducing a natural notion of observable energy dissipation. The time uniform bound is achieved through a simple Lyapunov function argument, this result applies to systems with complete observations and strong kinetic energy dissipation, but also to concrete examples with incomplete observations. With the Lyapunov function argument established, the geometric ergodicity is obtained by verifying the controllability of the filter processes; in particular, such analysis for ESQF relies on a careful multivariate perturbation analysis of the covariance eigen-structure.
منابع مشابه
Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation
The Ensemble Kalman filter and Ensemble square root filters are data assimilation methods used to combine high dimensional nonlinear models with observed data. These methods have proved to be indispensable tools in science and engineering as they allow computationally cheap, low dimensional ensemble state approximation for extremely high dimensional turbulent forecast models. From a theoretical...
متن کاملOn the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters
The Ensemble Kalman filter is a sophisticated and powerful data assimilation method for filtering high dimensional problems arising in fluid mechanics and geophysical sciences. This Monte Carlo method can be interpreted as a mean-field McKean-Vlasov type particle interpretation of the Kalman-Bucy diffusions. In contrast to more conventional particle filters and nonlinear Markov processes these ...
متن کاملParticle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*
This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated c...
متن کاملStochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems
This paper considers several filtering methods of stochastic nature, based on Monte Carlo drawing, for the sequential data assimilation in nonlinear models. They include some known methods such as the particle filter and the ensemble Kalman filter and some others introduced by the author: the second-order ensemble Kalman filter and the singular extended interpolated filter. The aim is to study ...
متن کاملAdaptive ensemble Kalman filtering of nonlinear systems
A necessary ingredient of an ensemble Kalman filter is covariance inflation [1], used to control filter divergence and compensate for model error. There is an ongoing search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra [2] enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the...
متن کامل